Nature Environmental Test and Improvement Countermeasures for a Certain Type of Special Equipment Launch Vehicle in a Hot-humid Marine Atmosphere

XU Zeqi, ZHOU Caiyuan, LI Zhengxiong, ZHANG Shiyan

Equipment Environmental Engineering ›› 2026, Vol. 23 ›› Issue (1) : 145-153.

PDF(1492 KB)
PDF(1492 KB)
Equipment Environmental Engineering ›› 2026, Vol. 23 ›› Issue (1) : 145-153. DOI: 10.7643/ issn.1672-9242.2026.01.017
Environmental Test and Observation

Nature Environmental Test and Improvement Countermeasures for a Certain Type of Special Equipment Launch Vehicle in a Hot-humid Marine Atmosphere

  • XU Zeqi, ZHOU Caiyuan, LI Zhengxiong, ZHANG Shiyan
Author information +
History +

Abstract

The work aims to evaluate the environmental worthiness of the special equipment launch vehicle in a hot-humid marine atmosphere through natural environmental test, screen the optimal design solutions, identify potential design defects and vulnerabilities, and propose improvement countermeasures for environmental worthiness. Based on the analysis of the product level, multi-level test samples were selected systematically, including test pieces, standard parts, components, parts, assembly and the whole devices. Natural environmental test methods, such as outdoor atmospheric weathering test, under shelter atmospheric weathering test, and indoor atmospheric weathering test, were employed to simulate typical local environmental conditions on the launch vehicle, including fully exposed exterior areas, the undersides of the chassis, sheltered and ventilated/wind-protected areas, as well as exposed and enclosed conditions within compartments. Test results were analyzed in line with the research objectives to propose targeted improvement countermeasures. One year of natural environmental test enabled effective assessment of the environmental worthiness of materials, protective treatments, and components, leading to the selection of optimal design solutions. Typical issues such as crevice corrosion and galvanic corrosion were identified in parts, assemblies and the whole devices. Data from extended testing over two to four years were used to further validate the results and accumulate systematic reference data for environmental worthiness design. Multi-level testing comprehensively evaluates the worthiness of materials, protective treatments, and components in complex environments, significantly enhancing testing efficiency. The combined use of multiple natural environmental test methods more accurately simulates the actual conditions of the launch vehicle, thereby improving the accuracy and practical applicability of test results. This provides a reliable basis for the environmental worthiness design and improvement of equipment.

Key words

launch vehicle / hot-humid marine atmosphere environment / natural environmental test / environmental worthiness improvement / screening test / validation test / vulnerability

Cite this article

Download Citations
XU Zeqi, ZHOU Caiyuan, LI Zhengxiong, ZHANG Shiyan. Nature Environmental Test and Improvement Countermeasures for a Certain Type of Special Equipment Launch Vehicle in a Hot-humid Marine Atmosphere[J]. Equipment Environmental Engineering. 2026, 23(1): 145-153 https://doi.org/10.7643/ issn.1672-9242.2026.01.017

References

[1] 郭强.热带岛礁大气环境车辆装备腐蚀规律与防护设计及控制措施[J].装备环境工程, 2023, 20(11): 121-132.
GUO Q.Corrosion Rule, Prevention Design and Control Countermeasures of Vehicle Equipment in Tropical Island-Reef Atmospheric Environment[J].Equipment Environmental Engineering, 2023, 20(11): 121-132.
[2] 宣卫芳, 胥泽奇, 肖敏, 等.装备与自然环境试验-基础篇[M].北京: 航空工业出版社, 2009: 3-6.
XUAN W F, XU Z Q, XIAO M, et al.Equipment and Natural Environment Test-Basic Chapter[M].Beijing: Aviation Industry Press, 2009: 3-6.
[3] 中央军委装备发展部.军用装备自然环境试验方法第1部分: 通用要求: GJB 8893.1—2017[S].北京: 国家军用标准出版发行部, 2017.
Ministry of Equipment Development of the Central Ministry Commission.Nature Environmemtal Test Methods for Military Materiel-Part 1: General Requirements: GJB 8893.1—2017[S].Beijing: Publishing and Distribution Department of National Military Standards, 2017.
[4] 冯林, 孟祥辉, 张薇, 等.美国海军陆战队车辆腐蚀/耐久性行驶试验方法综述[J].装备环境工程, 2023, 20(7): 24-31.
FENG L, MENG X H, ZHANG W, et al.Review on Vehicle Corrosion/Durability Driving Test Method of US Marine Corps[J].Equipment Environmental Engineering, 2023, 20(7): 24-31.
[5] 向永华, 王争荣, 曹京宜, 等.岛礁装备设施腐蚀现状及腐蚀控制策略研究[J].装备环境工程, 2021, 18(11): 28-34.
XIANG Y H, WANG Z R, CAO J Y, et al.Study on Corrosion Status and Corrosion Control Strategy for Equipment and Facilities Serving on Islands and Reefs[J].Equipment Environmental Engineering, 2021, 18(11): 28-34.
[6] 郁大照, 张代国, 王琳, 等.南海海洋环境下机载电子设备的腐蚀及外场防护对策[J].装备环境工程, 2019, 16(7): 8-12.
YU D Z, ZHANG D G, WANG L, et al.Corrosion of Airborne Electronic Equipment and Field Protection Measures in Marine Environment of South China Sea[J].Equipment Environmental Engineering, 2019, 16(7): 8-12.
[7] 徐安桃, 张睿, 张振楠, 等.车辆装备海上投送过程中的腐蚀问题探讨[J].装备环境工程, 2017, 14(10): 69-73.
XU A T, ZHANG R, ZHANG Z N, et al.Corrosion of Vehicle Equipment during Sea Delivery[J].Equipment Environmental Engineering, 2017, 14(10): 69-73.
[8] 徐安桃, 李锡栋, 周慧.岛屿环境下车辆金属材料的腐蚀及防护对策研究[J].装备环境工程, 2018, 15(7): 66-69.
XU A T, LI X D, ZHOU H.Corrosion and Protection of Vehicle Metals in Island Environment[J].Equipment Environmental Engineering, 2018, 15(7): 66-69.
[9] 赵永涛, 张亚如, 王志浩.海洋大气环境车辆腐蚀防护技术与试验验证[J].装备环境工程, 2025, 22(5): 111-118.
ZHAO Y T, ZHANG Y R, WANG Z H.Corrosion Protection Technology and Experimental Verification for Vehicles in Marine Atmospheric Environment[J].Equipment Environmental Engineering, 2025, 22(5): 111-118.
[10] 黄燕滨, 周科可, 巴国召, 等.沿海两栖车辆腐蚀现状及腐蚀综合控制技术[J].兵工学报, 2016, 37(7): 1291-1298.
HUANG Y B, ZHOU K K, BA G Z, et al.The Corrosion Status of Amphibious Vehicles along the Coast and Integrated Corrosion Control Technology[J].Acta Armamentarii, 2016, 37(7): 1291-1298.
[11] 刘国孝, 刘国忠, 方晓祖, 等.常规兵器在热带海岛地区腐蚀问题的探讨[J].兵器材料科学与工程, 2016, 39(3): 131-134.
LIU G X, LIU G Z, FANG X Z, et al.Corrosion Problems of Conventional Weapons in Tropical Island[J].Ordnance Material Science and Engineering, 2016, 39(3): 131-134.
[12] 中央军委装备发展部.装备环境工程通用要求:GJB 4239A—2022[S].北京: 国家军用标准出版发行部, 2023.
Ministry of Equipment Development of the Central Ministry Commission.General Requirements for Materiel Environmemtal Engineering: GJB 4239A—2022[S].Beijing: Publishing and Distribution Department of National Military Standards, 2023.
[13] 中央军委装备发展部.军用装备自然环境试验方法第2部分:户外大气自然环境试验:GJB 8893.2—2017[S].北京:国家军用标准出版发行部,2017.
Ministry of Equipment Development of the Central Ministry Commission.Nature Environmemtal Test Methods for Military Materiel-Part 2: Outdoor Atmospheric Weathering Test: GJB 8893.2—2017[S].Beijing: Publishing and Distribution Department of National Military Standards, 2017.
[14] 中央军委装备发展部.军用装备自然环境试验方法第3部分: 棚下大气自然环境试验: GJB 8893.3—2017[S].北京: 国家军用标准出版发行部, 2017.
Ministry of Equipment Development of the Central Ministry Commission.Nature Environmemtal Test Methods for Military Materiel-Part 3: Under Shelter Atmospheric Weathering Test: GJB 8893.3—2017[S].Beijing: Publishing and Distribution Department of National Military Standards, 2017.
[15] 中央军委装备发展部.军用装备自然环境试验方法第4部分: 库内大气自然环境试验: GJB 8893.4—2017[S].北京: 国家军用标准出版发行部, 2017.
Ministry of Equipment Development of the Central Ministry Commission.Nature Environmemtal Test Methods for Military Materiel-Part 4:Indoor Atmospheric Weathering Test: GJB 8893.4—2017[S].Beijing: Publishing and Distribution Department of National Military Standards, 2017.
[16] 肖军, 廖志忠, 余治民, 等.空空导弹和发射装置非金属结构及功能材料的适海性分析[J].航空兵器, 2022, 29(6): 111-117.
XIAO J, LIAO Z Z, YU Z M, et al.Analysis of Seaworthiness on Non-Metallic Structure and Functional Materials of Air-to-Air Missile and Launchers[J].Aero Weaponry, 2022, 29(6): 111-117.
[17] 颜晨曦, 曹建平, 于洋.大气环境下环氧涂层的老化行为及防护性能[J].电镀与精饰, 2021, 43(6): 50-56.
YAN C X, CAO J P, YU Y.Aging Behavior and Protective Performance of Epoxy Coating in Atmospheric Environment[J].Plating & Finishing, 2021, 43(6): 50-56.
[18] 卢亚辉, 韩志强.两栖装甲装备防腐蚀涂料自然环境试验研究[J].装备环境工程, 2005, 2(5): 37-41.
LU Y H, HAN Z Q.Research on Natural Environmental Test of Anti-Corrosion Paint of Amphibian Armoured Equipment[J].Equipment Environmental Engineering, 2005, 2(5): 37-41.
[19] 黄云, 胡其高, 张硕云.南海海洋环境对岛礁工程结构与设施影响研究[J].国防科技, 2018, 39(3): 50-63.
HUANG Y, HU Q G, ZHANG S Y.Research on the Marine Environmental Impact on Reef Structures Maintenance[J].National Defense Technology, 2018, 39(3): 50-63.
[20] 段体岗, 彭文山, 丁康康, 等.南海岛礁环境下304不锈钢腐蚀行为分析[J].装备环境工程, 2021, 18(11): 51-57.
DUAN T G, PENG W S, DING K K, et al.Corrosion Behavior of 304 Stainless Steel in the Sea Environment of South China Sea[J].Equipment Environmental Engineering, 2021, 18(11): 51-57.
[21] 刘亚鹏, 张慧霞, 王洪伦, 等.2507双相不锈钢南海大气腐蚀行为研究[J].西北工业大学学报, 2019, 37(S1): 106-113.
LIU Y P, ZHANG H X, WANG H L, et al.Corrosion Behavior of 2507DSS in the Atmospheric Environment of the South China Sea[J].Journal of Northwestern Polytechnical University, 2019, 37(S1): 106-113.
[22] 张宇, 刘亚鹏, 李开伟, 等.南海大气环境下304不锈钢的点蚀特性研究[J].表面技术, 2018, 47(12): 44-50.
ZHANG Y, LIU Y P, LI K W, et al.Pitting Characteristics of 304 Stainless Steel in the Atmospheric Environment of the South China Sea[J].Surface Technology, 2018, 47(12): 44-50.
[23] 王洪伦, 林志峰, 张邦双.濒海环境钢质紧固件防腐技术试验对比研究[J].装备环境工程, 2019, 16(4): 93-97.
WANG H L, LIN Z F, ZHANG B S.Comparative Test on Anti-Corrosion Technology of Steel Fasteners in Coastal Environment[J].Equipment Environmental Engineering, 2019, 16(4): 93-97.
[24] 夏昕鸣, 邢路阔, 宋泓清, 等.模拟南海大气环境下耐候钢腐蚀性能研究[J].装备环境工程, 2018, 15(3): 39-44.
XIA X M, XING L K, SONG H Q, et al.Corrosion Resistance of Weathering Steels in Simulated South China Sea Atmospheric Environment[J].Equipment Environmental Engineering, 2018, 15(3): 39-44.
[25] 杜翠玲, 徐刚, 刘克刚, 等.某型航空信号灯海洋盐雾环境适应性设计[J].航空工程进展, 2025, 16(3): 154-162.
DU C L, XU G, LIU K G, et al.Design of Marine Salt Spray Environment Adaptability for Some Aeronautical Signal Light[J].Advances in Aeronautical Science and Engineering, 2025, 16(3): 154-162.
[26] 肖军, 李栋, 黄帅军, 等.机载导弹和发射装置钢结构件的适海性试验[J].航空兵器, 2020, 27(2): 84-91.
XIAO J, LI D, HUANG S J, et al.Seakeeping Experiments of Steel Structural Parts on Airborne Missiles and Launchers[J].Aero Weaponry, 2020, 27(2): 84-91.
PDF(1492 KB)

Accesses

Citation

Detail

Sections
Recommended

/